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ABSTRACT I describe an extension of a portion of the
theory of the Laplace operator on compact riemannian mani-
folds to certain spaces with singularities. Although this approach
can be extended to include quite general spaces, this paper will
confine itself to the case of manifolds with cone-like singulari-
ties. These singularities are geometrically the simplest possible,
but they already serve to illustrate new phenomena that are
typical of the more general situation. Moreover, by inductive
arguments, the study of simplicial complexes whose simplices
have constant curvature and totally geodesic faces (e.g., pl.
manifolds) can in large measure be reduced to the study of
cone-like singularities.

1. Introduction
The general program can be described roughly as follows. Let
XI be a metric space such that, for some closed subset 2m,
Xn _2m is a smooth dense (incomplete) riemannian manifold
in the induced metric. We study the L2 theory of the Laplace
operator on the manifold Xn - m. Although Xn- 2m is
open, for a large class of spaces the compactness of Xn forces
the most fundamental features of the theory on compact
manifolds to continue to hold for Xn- Zm. However, when
the detailed consequences of these are examined in the more
general setting, certain qualitative aspects emerge that are not
present or, one might say, are disguised in the nonsingular case.
As a striking example, the cohomology theory which is naturally
related to Hodge theory is (still) L2--cohomology. But, although
the L2-cohomology groups of X - are topological invariants
of X, they do not coincide with the usual simplicial cohomology
groups unless X is a rational homology manifold.
The principle technique on which the results of this paper

are based is a functional calculus in which the method of sep-
aration of variables is used systematically in combination with
the functional calculus for the Laplace operator on riemannian
manifolds (see section 4). The main point here is to reduce local
analysis near the vertex of a cone to global analysis on the base.
Analogues of this technique are useful in essentially all problems
involving separation of variables.

2. L2-Cohomology
Let Nm be a riemannian manifold with metric g and possibly
nonempty boundary ONm. By the metric cone C(N) on N, we
mean the space (0, o) X N, equipped with the metric

drodr + r2g. [2.1]
Set

CuXuo(N) = I(r, x) & C(N)Iu < r < uoI. [2.2]

Xm+1-uu~pj is a smooth open riemannian manifold (possibly
with boundary) and each pj has a neighborhood Uj such that
U1 -pj is isometric to Co,.j(N73) for some u; and N7 (which
might not be connected). Set CO1 (N) = puCoj (N).

Because the general case is no harder, to simplify the expo-
sition we now assume that K = 1 and u; > 1. We write X =

C*,I(N) u M where OM = N and the union is along the
boundary. Thus, if aN = 4, X can be pictured as the surface of
an ice cream cone, and if ON # 4), as the ice cream cone itself.
Of course, X is not homeomorphic to a manifold in general.

There are two examples in which no singularity is actually
present: Nm= S', the unit sphere; and Nm = H', the unit
hemisphere. In these cases, C(Sjm) = Rtm+ 1, C(Hm) = R + X
Rtm, and X is smooth and flat near p. For NO = (HO) - q, the
completed cone p u C(N) = C*(N) = R°0 has a boundary,
even though aq =4. Thus, to do analysis on C(q) one must first
choose boundary conditions. It will be shown below that the
same situation obtains whenever Hk(N2k, R) # 0, even though
in higher dimensions p does not have the appearance of a
boundary point.
The necessity to choose boundary conditions already arises

from Poincare duality considerations in L2-cohomology. To
shorten the exposition we assume that ON = OX = 4. All our
results have straightforward generalizations to the case of ab-
solute or relative boundary conditions (see ref. 1). These will
be described elsewhere. In the case m = 2k, fix a subspace Va
c Hk(N2k, R). By an i-form on X we mean an i-form on the
smooth open riemannian manifold X - p. Let ci denote the
space of smooth closed i-forms 4 that are in L2 and that, in case
m = 2k, satisfy the boundary conditions of Eq. 3.17 below. Let
tl c ci denote those forms such that 4 = di for some 1, e L2
(satisfying Eq. 3.17 if m = 2k).

Definition 2.2: H_ (X) the i-th L2-cohomology group of X
is the vector space C /E.

Let

N iM
Hi-I(N) -0 Hi(M, N)-oHi(MM)O+Hi(N) 0 [2.3]

denote the exact sequence of the pair M, N. Then an L2 version
of the Poincare lemma and Mayer Vietoris sequence yields.
THEOREM 2.1.
m = 2k-1

Hi(M)
1tk(X) = i(Hk(M, N)) c Hk(M)

Hi(M, IN)

i < k
i = k
i > k

Definition 2.1: Xm+ I is a riemannian manifold with conelike
singularities if there exist pj e Xm+ 1, j = 1 . . . K such that m = 2k

Hi(X) =

hi(M)
j-1(Va) C Hk(M)

Hk+i(M, N)/b(Va)
HIf(M, N)
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COROLLARY 2.1 (Poincare duality). If X is orientable and
m =2k -1H7i(X) Hm+1-i(X). If m = 2k, (sig N = 0) and Va
is a maximal self-annihilating subspace under the cup product
pairing, then Hi(X).
The groups Ii(X) are topological invariants of X but do not

give the usual cohomology unless X is a rational homology
manifold. Rather they are isomorphic to the so called "middle
groups" defined via complexes of special chains by Goresky and
MacPherson (2) and also by Morgan. This connection was
conjectured by Dennis Sullivan (personal communication) after
he saw Theorem 2.1.

3. Hodge theory
Because we now want to construct a theory that generalizes
Hodge theory, we will have to build in the requirement that,
if a form 0 is in the domain of the Laplacian A, then 0, AO, dO,
and 60 are all in L2. If we omit the requirement dO, 30eeL2,
then we would sometimes have to admit harmonic forms that
were not closed and co-closed. Conversely, the requirement dO,
30 e L2 makes the theory unique [modulo the choice of
boundary conditions in case Hk(N2k,R) # 0]. We will begin,
therefore, by examining what it means for a harmonic form 0
to have the property that 0, dO, 30 e L2.

Let

0 = g(r)o + f(r)dr A w [3.1]

be a smooth i-form on C(N). Note that
*0 = (-1)irm-2igdr A *0 + rm-2i+2fw. [3.2]

Also, a straightforward calculation shows that

AO = [-g"- (m - 2i)r-g' ]0 + r-2gA4
+ 2r-3gdr A 34)

+ [-f"-(m - 2i)r-If' + (m - 2i)r-2f]dr A w

+ r-2fdr A Aw - 2r-fdw. [3.3]

Here *, 5, A denote the intrinsic operations on Nm, which we
now assume to be compact. Eq. 3.3 leads to equations of Bessel
type, with a regular singularity at r = 0, for the eigenforms of
A. Let

ai = (1 + 2i-m)/2 [3.4]

v(i) = [3.5]

a+(i) = as + v(i). [3.6]

Then a standard argument shows that the harmonic i-forms on
CUUO(N) can be written as (convergent) sums of forms of the
following four types:

ra + (i ) [3.7]
ra*(il)dw + al(i - 1)ra±(i-l)-ldr A w [3.8]

a±(i - I)ra+(i-l)p + ra*(i-l-ldr A 3p [3.9]
ra*(i-2)+ldr A ,6 [3.10]

where X, w and p, 41 are co-closed and closed eigenforms of 4,
respectively, with eigenvalue g. The eigenforms of A with ei-
genvalue X2 $ 0 have similar representations involving Bessel
functions, J,(Xr). If V = 0, a logarithmic solution must also be
introduced. If 0, w and p, i/ are co-exact and exact, the eigen-
functions corresponding to 3.7 to 3.10 will be called of types 1-4,
respectively. Note that types 1 and 3 are co-exact and types 2
and 4 are exact. In case 4, W, p, Vt are harmonic, the distinction
between types 1 and 3 and also between types 2 and 4 disap-
pears.

By using Eq. 3.2, a straightforward examination of 3.7 to 3.10
shows that the square of the pointwise norm of 01 is asymptotic
to a constant times

r 1-m+2v(i)
rl-m,rl-m log2 r

r-l-m±2v(i-1

r1-mI2v(i-2)
rl-m,rl-m log2 r

v(i) > 0
v(i) = 0

v(i - 2) > 0
v(i - 2) = 0

[3.11]

[3.12]

[3.13]

for types 1, 2 and 3, and 4, respectively. The condition that 0
e L2 is just

110112 < Kr-(m+ 1).

Thus, it is apparent that

(a) 0+,dO+,b0+ ICO,u(N) EL2

[3.14]

(b) 0-I Co,,(N) e L2 implies 0- is of type 1 or 4 and v(i)
< 1 respectively v(i - 2) < 1. Note that v(i) < 1 implies either
i =m-1/2ori =m/2-1,m/2.

(c) 0-, d0-, b0-jCo(N) e L2, in view of b, implies dO
- 30 0O. Thus, m = 2i, At = 0 for type 1 and m = 2i - 2, , =
0, for type 4.

In fact, it follows from Eq. 3.3 that in case m = 2i, A = 0, the
condition that g(r)q be an eigenform of A is just

-g"w = X2go. [3.15]
Because Eq. 3.15 is identical with the equation for special case
of the half-line (NO = q), it is clear that, in order to proceed
further, we will have to choose boundary conditions in this case.
Fix an orthogonal direct sum decomposition

Hk(N2k,R) = Va G V7 [3.16]
and let I oil, $I'j I be orthonormal bases for the corresponding
spaces of ]k(N), the space of harmonic k-forms. We say that
a k form 0(r,x) satisfies the boundary conditions Va C Vr if the
orthogonal projection irwk(N)[O(r,x)] of 0(r,x) (1,N) satisfies

lry-k(N)[O(r,x)] = VfA4)i + Ygioi. [3.17]
where fj(0) = gj(O) = 0. The definition for (k + 1) forms is
similar (and is also referred to as Eq. 3.17).
THEOREM 3. 1. If m = 2k - 1, the collection of all eigen i-

forms X, such that X, do, 34 e L2 determines a complete
orthonormal basis of L2. Ifm = 2k, the collection ofsuch ei-
genforms satisfying boundary conditions VaG Vr determine
a complete orthonormal basis. The eigenspaces are finite di-
mensional and the eigenvalues satisfy 0 < XI < X2-*
(D

Implicit in Theorem 3.1 is the Hodge decomposition and the
Hodge isomorphism fti(X) - Wi where Vi is the space of
harmonic i-forms satisfying the conditions of the theorem.
Poincare duality also follows (if in case m = 2k, *Va = V,)
because * maps harmonic forms to harmonic forms. *Va = V,
is equivalent to the condition of Corollary 2.1.

Theorem 3.1 leads to an analogue of the Bochner vanishing
theorem (3) for fi*(X). This theorem illustrates a geometric
interpretation of the condition v > 1 as a kind of non-negative
curvature condition at p. Moreover, there is a generalization
to the p.l. case which is quite interesting and which will be
described elsewhere.

4. A functional calculus for C(N)
The results of section 3 follow by essentially the same argu-
ments as in the nonsingular case (Fredholm theory applied to
the compact self-adjoint Green's operator) once a parametrix
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has been constructed and shown to possess sufficiently good
properties. The parametrix, in turn, is gotten by blending to-
gether the precise fundamental solution on the cone C(N) with
a standard parametrix on X - Co,.O(X), for some uO. Thus,
C(N) plays the role of the tangent space at p; analysis on C(N)
is "hard" and the subsequent globalization of this analysis to
X is "soft." In case X is only asymptotically conical, a cruder
parametrix can still be constructed.

In order to form functions of A on C(N) we replace the
Fourier transform, which is available only in the nonsingular
case N = S, C(S1 ) = Rm+1, by the Hankel transform (4)
combined with the functional calculus on N (compare ref. 5,
p. 179). In this section I briefly indicate a few of the most im-
portant examples of this procedure. Discussion of the exact
domain of validity of the formulas will be given elsewhere. For
brevity, I will also restrict myself to forms of type 1 (which in-
cludes the case of functions). The results of sections 4-6, how-
ever, depend on the formulas corresponding to 4.4 for types
2-4.

According to a functional calculus based on the Hankel in-
version formula, for forms of type 1 we have the following
formal representation for the kernel of the operator fA).

f(A) = (rlr2)ai Efj f(X2)JvJ(Xr1)j(Xr2)XdX
X Oj(xl) @ Oj(x2), [4.1]

where qj runs over an orthonormal basis of co-closed eigen-
forms of N, and a, v are defined as in Eqs. 3.4 and 3.6. In order
to "sum the series" wejregard the right-hand side of 4.1 as a
family of functions of A (or more precisely its co-closed part)
on N which is parameterized by r1, r2. These functions can then
be synthesized out of, for example, the resolvent, heat operator,
or wave operator and the asymptotic behavior of those operators
can be applied to discuss the behavior of f(A).
Example 4.1 (A-1, Green's operator): In this case, the Hankel

transform can be avoided because f(A) is defined by local
conditions:

(rl r2)ai E (rl/r2) 40j(xi) 0 k(x2) rl < r2.
[4.2]

The right-hand side is a Poisson type kernel (compare ref. 6)
on N evaluated at log (r2/rl). It can be synthesized out of
the heat operator Pce -tk. Here, PCC denotes orthogonal pro-
jection on the co-closed subspace. For vj > 0, 4.2 then be-
comes

(r,2ar coU-12)exp (log2 (r2rl) Pcce-udu
2x .i u/ex 4u au~c~d

[4.3]
(compare ref. 7).
More generally, F(s)A-s can be studied with help of the

Weber Schaftheitlin integral. For r1 = r2 = 1 this leads to the
following formula for the pointwise trace of F(s)A-8. Let bi
denote the ith Betti number of N and v = x/a7 .

tr[P(S)A-S(A\)]|1='r2=1 = trPCC

Xdb r(P-s+ )1 (S/2))
d~ffr~f l S + l)r(s - 1/2) + 41f(s). [4.4]

A, (s) can be shown to be a meromorphic function whose
properties closely resemble those of ,ce(s - 1/2), where Ace(s)

is the zeta function for the Laplacian on co-exact i-forms of N.
Like ice(s), il(s) depends only on the spectrum for co-exact
i-forms but can be rewritten in terms of the full spectrum for
j-forms, j < i (compare ref. 8). Similarly, the heat kernel and
wave kernel can be studied via Weber's second exponential
integral and the Lipschitz Hankel integral (see ref. 9, pp. 401,
395, and 389 for the above integrals). I do this elsewhere.

5. The asymptotic expansion for the trace of the heat
kernel
By methods like those outlined in sections 3 and 4, the funda-
mental solution E(t) for the heat equation on X can be con-
structed. Let aJI2(r,x) denote the pointwise coefficient of
t-(m+ 1)/2+J/2 in the asymptotic expansion of the fundamental
solution 6(t) on C(N). Here, we have included half powers of
t to cover the case ON # 4 . An easy scaling argument shows
that

ajl2(r,x) = r-m+jaj/2(1,x). [5.1]
In particular, setting Xu = X - Cou(N), Xi = M, we have

S aj!2(Y) = aj12(Y) + ( + 1- Um+ -i
U ~~~m+1-j- m + 1 -j

x 5 ajl2(1,X) jFm+ 1

S aj12(Y) =3 aj12(Y) - log u ajl2(1,X)
j = m + 1. [5.2]

Thus, the integral over X converges for j < m + 1 and, in
general, we can define its finite part by
p.f. aj12 = PIf aj/2

C 1
=JM a2 + (m + 1)/2 - j/2 fNaj/21.x) j i m + 1

[5.3]

p.f. aj/2 = Pf 3" aj12 =3" aj12 jm+ 1

Set

AK ( )=3U tr 6 (1,x, ,xt)
E-S>2lx] (m+ 1)/2+ J/2. 54

THEOREM 5.1.

(r)6l() (t) =12 co SN (
(ii) For K> m+ 1

s ~~K
tr Ei(t) E p.f.aj/2t-(M+K)/2+j/2

j=O

'/2 [3' a(m+l)/2(1,x)] log t

+ {i(N),
where

6Vi(N) = 1/2 L
o

U1 5 tr 6i(1,x,1,x,u)

j 1 1

+E al/2(1,X).
jp.m+l (m +1)/2 - j/2 JN J
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Note the appearance of log t which is absent in the smooth
case. Note also that 4it(N), the contribution to the constant term
coming from the singularity, is formally equal to the constant
term in the Laurent expansion of

f tr V-S(1,x,1,x), [5.5]

at s = 0.
In order to make the expression on the right-hand side of (ii)

more explicit, we will calculate aj/2(1,x), 4i (N) as spectral in-
variants of N. The calculation proceeds by establishing a con-
nection between tr 6(t) and tr A-s similar to that which holds
in the compact case. Some care must be taken because C(N) is,
in fact, not compact. tr A-s can be dealt with more easily than
tr4(t) via 4.4 and the corresponding formulas for types 2-4.
As in 4.4, let the meromorphic function {i(s) be defined by

= 1 F(v1 - S + 1) F(s - '/2) [5.6]

where the gAj run over the eigenvalues corresponding to co-exact
i-forms. Set

{i'>( A Er(vmFi(v + 1) r(s -1/2). [5.7]

Interpret ^i/(s) as 0 for i $ 0,... m - 1 and the ith Betti
number bi of N as zero if i 0... . m. Let Bj denote the jth
Bernoulli number.
THEOREM 5.2 (compare ref. 10).

(iW aj/2(1,X)

= ( Res [i,'> (s) + 21)l',,> (s) + {-'i-2,> (s)
S =(m+1)/2-j/2

ds(ii) {t'(N) = '/2 dj [s({it'(s) + 2i,1'i...(s) + l{ti-2(s))]Is=0

+ '/4(laiIlbi + Iai-Ibi-,) +1/2 ai. bi-

+ Res Vl--2S(i- 1)
s=O

d

Sj(s)|
d _s

-

r(s_-/2)PI-2s_
(ii) Li O ds 2-\/ir /=

+ Res :m+ (_ )j-1) p-1-2j-2s.
S=0 j=l i

Note that ,6(s) has at most a simple pole at s = 0. Thus,
d/ds[s * ,1(s)]Jo=0 is just the constant term in the Laurent ex-
pansion of 41(s) at s = 0. The residues in i-iii can be calculated
explicitly in terms of residues of the zeta functions (equiva-
lently, coefficients in the asymptotic expansion of tr e-&t) for
N. This will be done elsewhere. That precise form of the results
in Theorem 5.2 depends on the fact that the zeta functions on
N have simple poles. Because of the log t in i of Theorem 5.1,
the zeta functions for X can have double poles. Also, 'o(N) is
definitely not a locally computable invariant.

6. The Gauss Bonnet formula
In order to apply, the heat equation method to the calculation
of the L2-Euler characteristic x, we must take the alternating
sum with respect to i, of the right-hand sides of Theorem 5.2,
ii (11-15). This has the effect of making the global spectral
invariants cancel and we are left with just
A

}X) fx(Q + I' (-)i+'Res V-2s(i)X P,(0) + i
I

+ 1/2 IX[Co,,(N)] + i[C*,,(N), N]}. [6.1]

Here NO) denotes the Chern-Gauss Bonnet form. Moreover,
given 6.1, it is easy to see that the same formula holds with X
replaced by X throughout. The resulting expression, is then
equivalent to a Gauss Bonnet formula for the manifold with
boundary M but with the boundary term expressed as a spectral
rather than a curvature invariant.

7. The signature and n-invariant
When the heat equation method is applied to the signature
complex, an analysis like that of the previous two sections yields
the formula
THEOREM 7. 1.

Sig(X) = PL(jQ + i7(N)

where PL(Q) is the characteristic form corresponding to the
L-class and q(N) is the n7-invariant ofAtiyah-Patodi-Singer
(16).

Theorem 7.1 is of course equivalent to their formula because
the integral on the right-hand side need only be taken over
M,[PL(Q) 0 on Co,I(N)] and

Sig X = Sig(M) [7.1]

(see Theorem 3.4). However, the point here is not to give re-
derivation of their result. Rather I wish to emphasize that
Theorem 7.1 is the natural signature formula for a class of
compact singular spaces that are in themselves interesting
geometric objects.

Theorem 7.1 has a generalization to the p.l. case which seems
of particular interest and will be described elsewhere.

I am grateful to Bob MacPherson, John Morgan, Dennis Sullivan,
and Micheal E. Taylor for several helpful conversations during the
preparation of this work. The work was partially supported by National
Science Foundation Grant MCS 7802679.

1. Conner, P. (1956) Mem. Am. Math. Soc. 20.
2. Goresky, M. & MacPherson, R. (1977) C. R. Hebd. Seances Acad.

Sci. 248, 1549-1551.
3. Bochner, S. & Yano, K. (1953) Curvature and Betti Numbers,

Annals of Mathematics Studies 32 (Princeton Univ. Press,
Princeton, NJ).

4. Sneddon, I. (1972) The Use of Integral Transforms, (McGraw-
Hill, New York).

5. Singer, I. (1971) Prospects in Mathematics, Annals of Mathe-
matics Studies 70 (Princeton Univ. Press, Princeton, NJ), pp.
171-185.

6. Hille, E. & Phillips, R. (1957) Functional Analysis and Semi-
groups, American Mathematical Society of Colloquia Publication
(Am. Math. Soc., Providence, RI), Vol. 5, p. 3.

7. Cheeger, J. (1979) Ann. Math. 109, 259-322.
8. Ray, D. & Singer, I. (1971) Adv. Math. 71, 145-210.
9. Watson, G. (1973) A Treatise on the Theory of Bessel Functions

(Cambridge Univ. Press, New York).
10. Kac, M. (1966) Am. Math. 73, 1-23.
11. Abramov, A. (1951) Dokl. Akad. Nauk. SSSR Ser. Mat. Fiz. 81,

125-218.
12. Gilkey, P. (1974) The Index Theorem and the Heat Equation,

(Publish or Perish, Boston).
13. Gilkey, P. (1975) Adv. Math. 15,334-360.
14. McKean, H. & Singer, I. (1967) J. Diff. Geom. 1, 43-69.
15. Patodi, V. (1971) J. Diff. Geom. 5,233-249.
16. Atiyah, M., Patodi, V. & Singer, I. (1973) Bull. London Math.

Soc. 5,229-234.

2106 Mathematics: Cheeger


